Расчет и устройство теплоаккумулятора солнечного коллектора. Солнечный обогрев дома.
Теплоаккумулятор призван накопить излишнее тепло, выработанное солнечным коллектором, и равномерно распределить его в течении суток или даже нескольких дней. Делать солнечный коллектор без какого либо теплового аккумулятора нет большого смысла (разве что в расчете на тепловую инерционность дома). Но по логике, следует делать такой комплекс из теплового аккумулятора и солнечного коллектора, который бы обеспечивал бы дом теплом хотя бы одну ночь (после солнечного дня или хотя бы нескольких солнечных часов). А лучше — в течении нескольких дней после хотя бы одного солнечного дня.
Вместе с тем, не стоит наивно надеяться только на солнечный обогрев в условиях средней полосы России. Достаточно продолжительный пасмурный период с октября по февраль , короткий световой день и маленький угол наклона Солнца делают солнечный обогрев в этот период весьма проблематичным. Поэтому солнечный обогрев следует воспринимать как способ экономии расходов на отопление, а не полную альтернативу традиционному отоплению.
Теплоаккумулятор должен представлять из себя достаточно теплоемкое устройство, способное быстро аккумулировать тепловую энергию, достаточно долго его хранить и отдавать по требованию. Его теплоемкость должна соответствовать как мощности солнечного коллектора, так задачам, стоящим перед теплоаккумулятором. Вообще говоря, на Руси пользовались теплоаккумулятором издревле. Все известна т.н. «русская печь». Это несколько тонн кирпича и достаточно большая камера для горения дров. Будучи интенсивно протоплена в течении нескольких часов, такая печь хранила тепло несколько суток! Чем вам не теплоаккумулятор?
Конструкция теплоаккумулятора определяется физикой процесса. Из солнечного коллектора поступает воздух с температурой 40-60 градусов. Этим воздухом обдувается рабочее тело теплоаккумулятора. Оно нагревается и когда надо, через него начинают продувать воздух, который затем направляют на обогрев помещений.
Давайте рассчитаем, сколько тепла сможет выработать солнечный коллектор (его условный квадратный метр) и какой теплоаккумулятор должен ему соответствовать. Допустим, солнечный коллектор эффективно освещается солнцем 6 часов. За это время на него падает примерно 5 Квт тепловой энергии. Это эквивалентно 18 Мдж. Посмотрим, как нам лучше запасти эту энергию (КПД мы пока не учитываем).
В подавляющем большинстве случаев авторы всевозможных проектов рекомендуют использовать каменно-гравийные теплоаккумуляторы. Это достаточно разумно. Материал вечный, никаким воздействиям не подвержен. Ничего не боится. Но теплоемкость камня = 0,8 Кдж/кг*град. Что бы запасти всю энергию солнечного коллектора, нам потребуется примерно 750 кг. Камней (при условии, что исходная температура камней была 20 градусов.)
750 кг. это не много, где-то 0,3-0,4 кубометра. Но запасенного тепла нам хватит на отопление всего 2-х квадратных метров площади (из расчета 100 ватт/метр) .
5000 Ватт / 24 часа / 100 ватт = 2,08 метра. (и это без учета КПД и всевозможных потерь).
А что бы запасти тепла на сутки для дома в 100 кв. метров, нам потребуется соответственно в 50 раз больший солнечный коллектор и в 50 раз больший теплоаккумулятор. Т.е. солнечный коллектор в 50 кв. метров и аккумулятор на 37,5 тонн ! (Реально — тонн 50). Такой теплоаккумулятор будет занимать объем уже в 20-25 кубометров. И это всего лишь ради отопления на 1 сутки!
Если солнечная погода стоит несколько дней подряд, можно было бы запасти тепла по больше, но второй закон термодинамики гласит, тепло не передается от более холодного тела к более теплому в обычных условиях. Т.е. как только теплоаккумулятор нагреется до температуры обдувающего его воздуха, он перестанет поглощать и накапливать тепло. Сделать теплоаккумулятор более теплоемким можно либо дальнейшим его наращиванием по объему, либо применением более теплоемких материалов.
Самым теплоемким (и бесплатным) материалом является вода. Ее теплоемкость ~ 4.2 Кж/кг*град. Это в 5,25 раз больше, чем у камня. Т.е. для того условного метра солнечного коллектора нам потребуется не 750 кг камня, а примерно 150 литров воды. (для суточного аккумулятора и 50 метрового солнечного коллектора соответственно ок. 7,5 тонн воды. ).
Но если организовать теплообмен между воздухом и камнями проще простого (проложил воздуховод и завалил его камнями, воздух будет проходить в щели между камнями и обмениваться с ним теплом). То сделать теплообменник вода / воздух гораздо сложнее. Однако тут есть весьма интересное и остроумное решение — создать искусственные камни с теплоемкостью воды! Как? Да разлить воду по пластиковым ПЭТ бутылкам и канистрам! Многочисленные зазоры между ними будут тем самым теплообменником вода/воздух.
Конечно, бутылок и канистр потребуется весьма много для нескольких десятков тонн воды, но зато не потребуется делать никакого теплообменника.
Разумеется, человек, задумавший устроить у себя солнечное отопление из коллектора и теплоаккумулятора, скорее всего будет исходить не из того, что надо или хочется, а из того, что он может себе позволить сделать. Если есть крыша определенного размера, из которой можно сделать солнечный коллектор, то вряд ли он будет делать солнечный коллектор специально (большего размера или в стороне от дома). То же и с теплоаккумулятором. Это ведь не бочка с водой для садового душа. Тут счет идет на кубометры. И устроить теплоаккумулятор с бухты – барахты вряд ли удастся. Место для него надо заранее резервировать на стадии проектирования дома. Чем я собственно и занимаюсь…
Итак, в моем случае , согласно проекта под теплоаккумулятор выделяется примерно 60-65 кубометров подвала. Тут можно будет разместить около 50 тонн воды (в канистрах по 10-20 литров и т.п.) В теплооборот будут так же включены примерно 30 куб. метров бетона (ок. 50 тонн) составляющих стены подвала теплоаккумулятора (их планируется утеплить с другой стороны для уменьшения теплопотерь аккумулятора).
Таким образом максимальная теплоемкость моего теплоаккумулятора (для перепада температур в 40 градусов составит 50.000 кг * 4,2 КДж * 40 + 50.000 кг * 0,8 КДж * 40 = 10.000 Мдж (10 ГДж). Это эквивалентно сжиганию примерно 600-1000 кг отборных дров (1,5-2 кубометра). Больше этого количества тепла я не смогу запасти даже теоретически. Если учесть что отопления потребуется порядка 100 ватт/час/кв.м , (0,36 Мдж), то я смогу этим теплом обогреть 27000 кв.м/час. (т.е. либо 100 кв.метров в течении 270 часов, либо 200 кв. метров в течении 135 часов, либо 25 метров в течении 1000 часов и т.д.). Разумеется это зависит от конструкции дома и организации теплоаккумулятора и системы воздушного отопления.
Теперь давайте рассчитаем, за какое время мой солнечный коллектор сможет нагреть этот теплоаккумулятор. Солнечный коллектор теоретически может иметь площадь до 100 кв. метров. Допустим, с каждого метра я смогу снимать по 500 Ватт энергии в час. (это примерно 1,8 МДж/час. Соответственно со всего коллектора 180 Мдж/час. Что бы зарядить весь теплоаккумулятор «по самую крышку» соответственно потребуется 10000 / 180 = 55-60 солнечных часов. В реальности — гораздо больше, т.к. у теплоаккумулятора есть и теплопотери. Возможно, в реальности он никогда и не зарядится на полную силу.
Получить 60 солнечных часов подряд , как понимаете, совершенно невозможно. Максимальное время, в течении которого солнечный коллектор – крыша будет работать – это 5-6 часов в лучшем случае. Крыша ориентирована на юг и утром и вечером ждать от нее эффективной работы не стоит. Но за 5-6 часов она способна выдать около 1000 МДж тепла (т.е. зарядить теплоаккумулятор на 1/10 его емкости). Правда есть небольшой резерв в виде пристроенного к дому зимнего сада. Площадь его крыши примерно 50 кв. метров, возможно с него тоже можно будет получать определенное количество тепла.
Напрашивается вывод: Необходимо разделить теплоаккумулятор на несколько «банок» — отделов. Тогда можно будет управлять им по значительно более гибкому алгоритму. Если солнечный день — случайность, и их всего 1-2, то в течении его и зарядить 1-2 «банки» (например 20%) аккумулятора. Зато практически полностью. Если же установилась хорошая погода надолго, то последовательно заряжать все остальные банки теплоаккумулятора. Так же следует и расходовать тепловую энергию, по очереди «разряжая» отделы аккумулятора.
Для такой организации «банки» должны быть серьезно теплоизолированы друг от друга, но иметь возможность объединятся. Гибкая система управления позволит наиболее полно использовать потенциал солнечного отопления.
Другой вывод, который можно сделать из вышеприведенных расчетов: При правильной организации солнечного коллектора и теплоаккумуляторы 1 условный квадратный метр солнечного коллектора за один свой «рабочий час» (когда он освещен солнцем) вырабатывает тепловую энергию в количестве достаточном для отопления с коэффициентом 5-8 . (Для условной величины расходов на отопление 100 Ватт/кв.метр). Чем лучше утеплен дом, более качественно устроен тепловой коллектор, теплоаккумулятор и коммуникации, тем выше будет этот коэффициент.
Можно даже вывести простую формулу некоего теплового баланса.
Кк * Sск * Тсолн. = Sот * Тоб, где
Кк — коэффициент конверсии тепла, 5…8 (не более 8 принципиально при КПД 100%)
Sск — площадь солнечного коллектора (кв.м)
Тсолн — время эффективного освещения коллектора солнцем. (часы)
Soт — обогреваемая площадь помещения. КВ м.
Тоб — время обогрева помещения (час.)
Исходя из своих возможностей или потребностей и располагая определенными исходными данными, можно рассчитать все остальные параметры солнечного обогрева.
Например, у вас есть возможность сделать солнечный коллектор площадью 10 кв. м, который будет освещен в течении 5 часов. Получим 5..6 * 10 * 5 = 250…300. Соответственно, мы сможем отапливать 25 кв.м. в течении 10-12 часов. Или 10 кв. м в течении суток.
Очевидно, что имея небольшой солнечный коллектор, нет смысла закладывается на отопление всего дома. Лучше качественно обогревать 1 помещение . Это уже даст существенное экономию топлива или электроэнергии. Но приведенные расчеты доказывают, что организовывать солнечный обогрев в средней полосе ЕЧ России как основной — достаточно проблематично. А вот использовать его как вспомогательный — весьма перспективно.
Посудите сами. В конце ранней осени, после бабьего лета, после теплых ясных дней, теплоаккумулятор большой емкости будет заряжен практически полностью. Это обеспечит очень существенную экономию топлива в период практически до конца ноября. В декабре и январе солнечный обогрев работать не будет, а начиная примерно с середины февраля солнечные дни уже не редкость и солнечный обогрев вновь начнет набирать обороты. C середины марта солнечный обогрев может сделать уже ненужным использование традиционного топлива. Таким образом, мы сокращаем отопительный сезон всего до 2-3 месяцев, вместо 6-7! Экономия топлива минимум 50% . Учитывая практически вертикальный рост цен на энергоносители окупаемость затрат на создание солнечного обогрева составит максимум несколько лет.
Константин Тимошенко